A kinetically significant intermediate in the folding of barnase.

نویسنده

  • A R Fersht
چکیده

A series of studies on the small protein barnase in the 1990s established it as a paradigm for protein folding in which there is a kinetically important intermediate. But, a recent study in PNAS claims that there are no stable intermediates on the folding pathway. I summarize the evidence that proves that the folding kinetics of barnase is inconsistent with the absence of a folding intermediate. I reinterpret the major evidence presented against the intermediate (an inflection in the unfolding limb of a chevron plot) and show that the inflection is precisely what is predicted from the energy diagram for a three-state reaction with a kinetically significant on-pathway intermediate. The inflection is indicative of a change of rate determining step from the formation to breakdown of an intermediate on unfolding. Other evidence presented against the intermediate is, in fact, consistent with a kinetically important intermediate. I show how the complexities in the kinetics provide a means for measuring otherwise unobtainable rate constants and provide a strategy for mapping the structure of the early transition state in folding. Rather than refute multistate kinetics, the presence of the inflection in the unfolding plot constitutes a novel type of evidence for on-pathway folding intermediates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absence of stable intermediates on the folding pathway of barnase.

Barnase is one of the few protein models that has been studied extensively for protein folding. Previous studies led to the conclusion that barnase folds through a very stable submillisecond intermediate ( approximately 3 kcal/mol). The structure of this intermediate was characterized intensively by using a protein engineering approach. This intermediate has now been reexamined with three direc...

متن کامل

Determination of the folding transition states of barnase by using I-value-restrained simulations validated by double mutant IJ-values

The protein barnase folds from the denatured state into its native conformation via a high-energy intermediate. Using I-values determined experimentally from single-point mutations as restraints in all-atom molecular dynamics simulations, we have determined ensembles of structures corresponding to the transition states for the formation of the folding intermediate and its conversion into the na...

متن کامل

Physical-organic molecular biology: pathway and stability of protein folding

Protein engineering, the design and synthesis of novel proteins by genetic engineering, allows complex problems in molecular biology to be studied by structure-activity relationships in an analogous manner to the application of physical-organic chemistry to simple organic molecules. This approach has been applied to study the folding pathway and stability of barnase, the RNAse from Bacillus amy...

متن کامل

Chaperonin-Catalyzed Rescue of Kinetically Trapped States in Protein Folding

GroEL and GroES form a chaperonin nano-cage for single protein molecules to fold in isolation. The folding properties that render a protein chaperonin dependent are not yet understood. Here, we address this question using a double mutant of the maltose-binding protein DM-MBP as a substrate. Upon spontaneous refolding, DM-MBP populates a kinetically trapped intermediate that is collapsed but str...

متن کامل

Decoding the Folding of Burkholderia glumae Lipase: Folding Intermediates En Route to Kinetic Stability

The lipase produced by Burkholderia glumae folds spontaneously into an inactive near-native state and requires a periplasmic chaperone to reach its final active and secretion-competent fold. The B. glumae lipase-specific foldase (Lif) is classified as a member of the steric-chaperone family of which the propeptides of α-lytic protease and subtilisin are the best known representatives. Steric ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 26  شماره 

صفحات  -

تاریخ انتشار 2000